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Figure 1: The structure of human DNA

One main goal of genetic epidemiol-
ogy is finding the underlying mecha-
nisms of disease developments with re-
gard to genetic features. Consequently,
the unique DNA fingerprints consist-
ing of sequences of nucleotide bases
are jointly analyzed with disease out-
comes and environmental factors that
can also play a role in developing cer-
tain diseases.

GRS (genetic risk scores) summarize genetic features of
individuals in a single statistic with regard to a certain disease
(e.g., type II diabetes) and a specific subset of the DNA (e.g.,
the TCF7L2 gene). Their main purpose is to

▶ derive which genetic loci influence the disease development
in which interplay and to

▶ construct highly predictive models for disease prevention in
precision medicine.

In practice, GRS are constructed using a generalized linear
model (GLM)

g(E[Y | X = x ]) = β0 + β1x1 + . . . + βpxp,

in which Y may be a binary disease status or a quantitative
outcome (e.g., blood pressure), X is a p-dimensional vector
of genetic features, usually SNPs (single nucleotide polymor-
phisms) that encode base-pair substitutions at certain loci, and
g is a link function. The weights βi are in practice obtained by
gathering the effect sizes of single SNPs in independent asso-
ciation studies, i.e., the weights usually result from univariate
regression models.

Statistical Learning Approach for Constructing GRS

The problem of constructing GRS can also be stated more
generally. A function GRS : X → Y is to be found that
resembles the true regressor E[Y | X = x ] as close as pos-
sible. Now, given epidemiological data, this problem can be
addressed using statistical learning procedures that are capa-
ble of extracting knowledge using training data sets with small
samples sizes as it usually is the case for data sets from epi-
demiological studies.
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Figure 2: Workflow of constructing and evaluating GRS using statistical learning

Tree-Based Statistical Learning Methods I

A reference procedure commonly used for constructing GRS is
the elastic net creating sparse linear models.
However, linear models cannot take interaction effects be-
tween features into account unless specifying which loci might
interact prior to fitting the model. Since this precise prior
knowledge is usually not available, methods that can identify
interactions on their own might be preferable.
The tree-based statistical learning methods random forests, an
ensemble of randomized decision trees, and logic regression are
able to achieve this.

Tree-Based Statistical Learning Methods II

Since the feature space of GRS consists
of discrete variables, random forests and
logic regression are both theoretically able
to cover each possible prediction scenario.
For stabilizing single logic regression mod-
els, we also evaluated logic bagging – an
application of bagging to logic regression.
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Figure 3: Exemplary tree models describing the same prediction
function. a Classification tree. b Logic tree.

Results

Random forests, random forests VIM (random forests with a prior variable selec-
tion), logic regression, logic bagging, and elastic net were evaluated in an extensive
simulation study consisting of 92 data scenarios in total. Figure 4 shows an excerpt
from this evaluation for varying interaction effects. For increasing effect sizes, the
tree-based procedures lead to increased predictive performances compared to elas-
tic net. Even for solely marginal genetic effects, the tree-based methods tend to
outperform elastic net. See [1] for details.
For confirming our results on real data, we evaluated a data set from a cohort
study (the SALIA study conducted at the IUF) and constructed GRS for rheumatoid
arthritis. We followed two approaches,

▶ a gene-based construction approach where influential genes from a literature
research were selected and all available SNPs in these genes were used to
construct the GRS and

▶ a genome-wide approach being the complement to the first approach by
excluding genetic variants located in these genes.

Again, the tree-based methods seem to yield superior predictive performances, high-
lighting that the ensemble methods random forests and logic bagging lead to the
highest results overall.
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Figure 4: Comparison of the predictive performances of the re-
garded statistical learning procedures as part of a simulation
study
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Figure 5: Predictive performances of GRS constructed for
rheumatoid arthritis as part of a real data application

Logic Decision Trees

It became clear that random forests and logic bagging can create highly predictive
GRS. However, these ensemble models are black boxes that can no longer be easily
interpreted. Furthermore, SNP interactions involving negligible marginal effects and
interactions with continuous environmental variables might be missed. Hence, we
developed a procedure that is aimed at both interpretability and predictive ability,
logicDT (Logic Decision Trees).

A global search using simulated annealing
is carried out for identifying the ideal set
of Boolean conjunctions of input variables
which are then used as splitting variables
in the decision trees. Environmental co-
variables (such as the exposure to NO2)
are used to fit continuous regression mod-
els in the leaves for fully exploiting the data
structure.
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Figure 6: An exemplary logic decision tree using the identified set
of conjunctions as splitting terms and the continuous covariable
for fitting regression models in the leaves
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