
Recent advances in 3D polarized light imaging (3D-PLI) provide a highly
detailed view of the cortical fiber architecture of postmortem whole-brain
sections at the micrometer scale [1]. As a prerequisite for automated
analysis of cortical architecture, a precise extraction of the cortex is needed.
Therefore, we first aim to train a robust tissue segmentation model for 3D-
PLI images of sections from a vervet monkey brain, which separates the data
into white-matter (WM), gray-matter (GM) and background (BG). Then we
use the segmentations to formalize the cortical ribbon by Laplacian
streamlines. Variations in different types of learned feature maps along
these streamlines indicate changes in the cortical nerve fiber architecture.
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• Could achieve a frequency weighted IOU of 99.2 % on the segmentation task
• Consistent boundaries in 3D (masks were not used for 3D reconstruction)
• Segmentations enable automated analysis of large scale data

CONCLUSIONS

• Contrastive pre-training of a U-Net encoder produces feature maps h and z
• Finetuning of the U-Net decoder on the segmentation task using Focal Loss
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AUTOMATED ANALYSIS OF CORTICAL ARCHITECTURE
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• Selection of crops that provide the most information to the model
• Creates a diverse dataset capturing many textures throughout the brain

• Analyze the cortex along Laplacian streamlines between WM and BG
• Variations in the feature maps z, h indicate changes in the architecture
• The green line highlights the border between visual areas V1 and V2

SimCLR [3] objective:

𝑙𝑖,𝑗 = − log
exp 𝑠𝑖𝑚 Τ𝑧𝑖, 𝑧𝑗 τ

σ𝑘,𝑘≠𝑖 exp 𝑠𝑖𝑚 Τ𝑧𝑖 , 𝑧𝑘 τ


