Automatic Characterization of Cortical Nerve Fiber

 Distribution Patterns in 3D Polarized Light Imaging Alexander Oberstrass ${ }^{1,2}$, Markus Axer ${ }^{1,3}$, Katrin Amunts ${ }^{1,4}$ and Timo Dickscheid ${ }^{1,2,5}$${ }^{1}$ Institute of Neuroscience and Medicine, Research Centre Jülich, Germany
${ }^{2}$ Helmholtz AI, Research Centre Jülich, Germany
${ }^{3}$ Bergische Universität Wuppertal, Germany
${ }^{4}$ Cécile \& Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Germany
${ }^{5}$ Department of Computer Science, Heinrich-Heine University Düsseldorf, Germany

Abstract

MOTIVATION Recent advances in 3D polarized light imaging (3D-PLI) provide a highly detailed view of the cortical fiber architecture of postmortem whole-brain sections at the micrometer scale [1]. As a prerequisite for automated analysis of cortical architecture, a precise extraction of the cortex is needed. Therefore, we first aim to train a robust tissue segmentation model for 3DPLI images of sections from a vervet monkey brain, which separates the data into white-matter (WM), gray-matter (GM) and background (BG). Then we use the segmentations to formalize the cortical ribbon by Laplacian streamlines. Variations in different types of learned feature maps along these streamlines indicate changes in the cortical nerve fiber architecture.

TISSUE SEGMENTATION IN AN ACTIVE LEARNING LOOP

- Selection of crops that provide the most information to the model - Creates a diverse dataset capturing many textures throughout the brain

3D-PLI SPECIFIC DATA AUGMENTATIONS

Transform, Filter and Add Signals in Fourier Space

- Contrastive pre-training of a U-Net encoder produces feature maps h and z
- Finetuning of the U-Net decoder on the segmentation task using Focal Loss

AUTOMATED ANALYSIS OF CORTICAL ARCHITECTURE

Transmittance

Fiber Orientation Maps

Dense Feature Maps z

- Analyze the cortex along Laplacian streamlines between WM and BG
- Variations in the feature maps z, h indicate changes in the architecture
- The green line highlights the border between visual areas V1 and V2

CONCLUSIONS

- Could achieve a frequency weighted IOU of 99.2 \% on the segmentation task
- Consistent boundaries in 3D (masks were not used for 3D reconstruction)
- Segmentations enable automated analysis of large scale data

\section*{Refereces

Refereces
 References [1] M. Axer et al., Frontiers in Neuroinformatics vol. 5 (2011)

[2] O. Ronneberger et al., International Conference on Medical image computing and computer-assisted intervention (2015) [3] T. Chen et al., International Conference on Machine Learning vol. 119, pp. 1597-1607 (2020)
4.].7.Lin al., Proceedings of the IEEE international conference on computer vision, pp. 2980-2988 (2017)

Acknowledgements This project received funding from the European Union's Horizon 2020 Research and Innovation Programme, grant agreement 945339 (HBP SGA3), and from the Helmholtz Association's Initiative and Networking Fund through the Helmholtz International Bigbrain Analytics and Learning Laboratory (HIBALL) under the Helmholtz International Lab grant agreement Intertabs-0015. Computing time was granted through JARA on
the supercomputer JURECA at Jülich Supercomputing Centre (JSC). Vervet monkey research was supported by the National Institutes of Health under grant agreements RO1MHO92311 and P40ODO10965.

