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» State-of-the-art machines cannot cope with irregular inflectional Research rationale:
morphology (as opposed to regular)
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Test case: Spanish
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pattern within the verbal paradigm [1, 2]. » The transformer used is a
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as loss function. o o » Surprisingly, L-shaped verbs require less lexical support than
Non-L-shaped verbs. Training with 10% of L-shaped verbs yielded
a stem accuracy of 70%, while training with 10% of Non-L-shaped

verbs yielded only a stem accuracy of 40%.
Error analyses show that the irregular stem consonant (1sg IND

» The entries of the raw dataset include lemma/form pair
(represented in IPA) and a Morpho-Syntactic tag Description
(MSD). The paradigm is constructed (as shown above).

» Two-slot combinations followed by MSD for the slot to be filled is
treated as input and the inflected form for the target slot as the

output.

We considered 333 lemmas and downsampled the combinations
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